Segmentasi Pelanggan Menggunakan Metode K-Means Dalam Data Mining untuk Strategi Promosi UMKM Lily Cakes Pontianak

Penulis

  • Edward Revaldo Danuwinata Universitas Widya Dharma Pontianak
  • Jimmy Tjen Universitas Widya Dharma Pontianak

DOI:

https://doi.org/10.37424/informasi.v17i2.438

Kata Kunci:

Data Mining, Segmentation, Clustering, Business Intelegence, K-Means

Abstrak

Segmentasi pelanggan merupakan strategi penting dalam pemasaran untuk meningkatkan daya saing bisnis. Penelitian ini menerapkan metode K-Means untuk mengelompokkan pelanggan Lily Cakes berdasarkan karakteristik pembelian mereka. Data yang digunakan meliputi 679 transaksi selama tiga hari raya utama: Natal, Imlek, dan Idul Fitri. Jumlah klaster optimal ditentukan menggunakan metode silhouette. Hasil penelitian menunjukkan adanya empat klaster pelanggan dengan preferensi dan pola pembelian yang berbeda. Klaster 1 cenderung membeli kue premium untuk Lebaran dan Imlek, Klaster 2 berfokus pada Idul Fitri, Imlek, dan Natal, Klaster 3 membeli kue standar dan premium saat Imlek, sedangkan Klaster 4 lebih aktif berbelanja untuk Natal dan Lebaran. Berdasarkan hasil tersebut, disarankan strategi pemasaran yang disesuaikan dengan karakteristik tiap klaster, seperti promosi pre-order, potongan harga, serta pemasaran digital melalui Instagram dan WhatsApp. Penelitian ini berkontribusi terhadap penerapan data mining dalam konteks UMKM konvensional serta menjadi acuan praktis bagi pelaku usaha dalam mengoptimalkan strategi promosi berbasis data untuk meningkatkan penjualan dan daya saing sesuai dengan perkembangan zaman.

Referensi

Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. In Electronics (Switzerland) (Vol. 9, Issue 8). https://doi.org/10.3390/electronics9081295

Al Qahtani, H., & P. Sankar, J. (2024). The cluster analysis in the aluminium industry with K-means method: an application for Bahrain. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2361475

Baiq Nikum Yulisasih, Herman, H., & Sunardi, S. (2024). K-Means clustering method

for Customer Segmentation Based On Potential Purchases. Jurnal ELTIKOM, 8(1), 83–90. https://doi.org/10.31961/eltikom.v8i1.1137

Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow method. https://doi.org/10.23977/accaf.2020.010102

Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23(1). https://doi.org/10.1186/s12859-022-04675-1

Ghazal, T. M., Hussain, M. Z., Said, R. A., Nadeem, A., Hasan, M. K., Ahmad, M., Khan, M. A., & Naseem, M. T. (2021). Performances of k-means clustering algorithm with different distance metrics. Intelligent Automation and Soft Computing, 30(2), 735–742. https://doi.org/10.32604/iasc.2021.019067

Ikotun, A. M., Almutari, M. S., & Ezugwu, A. E. (2021). Kâ€Âmeansâ€Âbased natureâ€Âinspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions. In Applied Sciences (Switzerland) (Vol. 11, Issue 23). MDPI. https://doi.org/10.3390/app112311246

Mohassel, P., Rosulek, M., & Trieu, N. (2020). Practical privacy-preserving k-means

clustering. Proceedings on Privacy Enhancing Technologies, 2020(4), 414–433.

https://doi.org/10.2478/popets-2020-0080

Mohsin Abdulazeez, A. (2021). PJAEE, 17 (7) (2021) Meta-heuristic algorithms for

k-means clustering: a review meta-heuristic algorithms for k-means clustering: a review meta-heuristic algorithms for k-means clustering: a review. https://www.researchgate.net/publication/349054880

Omol, E., Onyangor, D., Mburu, L., & Abuonji, P. (2024). Application of k-means clustering for customer segmentation in grocery stores in kenya. in international journal of science. http://ijstm.inarah.co.id

Ong, A. K. S., Prasetyo, Y. T., Esteller, A. J. D., Bruno, J. E., Lagorza, K. C. O., Oli, L. E. T., Chuenyindee, T., Thana, K., Persada, S. F., & Nadlifatin, R. (2023). Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering. PLOS ONE, 18(2), e0281948. https://doi.org/10.1371/journal.pone.0281948

Raeisi, M., & Sesay, A. B. (2022). A distance metric for uneven clusters of unsupervised k-means clustering algorithm. ieee access, 10, 86286–86297. https://doi.org/10.1109/access.2022.3198992

Saxena, A., Agarwal, A., Pandey, B. K., & Pandey, D. (2024). examination of the criticality of customer segmentation using unsupervised learning methods. circular economy and sustainability, 4(2), 1447–1460. https://doi.org/10.1007/s43615-023-00336-4

Sudirjo, F. (2023). marketing strategy in improving product competitiveness in the global market. journal of contemporary administration and management (adman), 1(2), 63–69. https://doi.org/10.61100/adman.v1i2.24

Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. sustainability, 14(12), 7243. https://doi.org/10.3390/su14127243

Zubair, Md., Iqbal, MD. A., Shil, A., Chowdhury, M. J. M., Moni, M. A., & Sarker, I. H. (2024). An improved k-means clustering algorithm towards an efficient data-driven modeling. annals of data science, 11(5), 1525–1544. https://doi.org/10.1007/s40745-022-00428-2

Diterbitkan

2025-11-24